Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(26): e202203941, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36791391

RESUMEN

Plant research is hampered in several aspects by a lack of pure oligosaccharide samples that closely represent structural features of cell wall glycans. An alternative to purely chemical synthesis to access these oligosaccharides is chemo-enzymatic synthesis using glycosynthases. These enzymes enable the ligation of oligosaccharide donors, when activated for example as α-glycosyl fluorides, with suitable acceptor oligosaccharides. Herein, the synthesis of xylan oligosaccharides up to dodecasaccharides is reported, with glycosynthase-mediated coupling reactions as key steps. The xylo-oligosaccharide donors were protected at the non-reducing end with a 4-O-tetrahydropyranyl (THP) group to prevent polymerization. Installation of an unnatural 3-O-methylether substituent at the reducing end xylose of the oligosaccharides ensured good water solubility. Biochemical assays demonstrated enzymatic activity for the xylan acetyltransferase XOAT1 from Arabidopsis thaliana, xylan arabinofuranosyl-transferase XAT3 enzymes from rice and switchgrass, and the xylan glucuronosyltransferase GUX3 from Arabidopsis thaliana. In case of the glucuronosyltransferase GUX3, MALDI-MS/MS analysis of the reaction product suggested that a single glucuronosyl substituent was installed primarily at the central xylose residues of the dodecasaccharide acceptor, demonstrating the value of long-chain acceptors for assaying biosynthetic glycosyltransferases.


Asunto(s)
Arabidopsis , Xilanos , Xilanos/química , Espectrometría de Masas en Tándem , Xilosa , Oligosacáridos/química , Glucuronosiltransferasa
2.
Curr Opin Chem Biol ; 71: 102208, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108403

RESUMEN

A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.


Asunto(s)
Pared Celular , Polisacáridos , Pared Celular/metabolismo , Polisacáridos/metabolismo , Plantas/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos , Biología
3.
European J Org Chem ; 2022(27): e202200313, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36035813

RESUMEN

Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and ß-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) ß-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.

4.
J Am Chem Soc ; 144(21): 9302-9311, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593593

RESUMEN

The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.


Asunto(s)
Anafilaxia , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Inmunoglobulina E , Ligandos , Activación de Linfocitos , Ratones
5.
Methods Mol Biol ; 2460: 115-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34972933

RESUMEN

Chemically synthesized plant oligosaccharides have recently evolved as powerful molecular tools for plant cell wall biology. Synthetic plant glycan microarrays equipped with these oligosaccharides enable high-throughput analyses of glycan-binding proteins and carbohydrate-active enzymes. To produce these glycan microarrays, small amounts of glycan solution are printed on suitable surfaces for covalent or non-covalent immobilization. Synthetic plant glycan microarrays have been used for example to map the epitopes of plant cell wall-directed antibodies, to characterize glycosyl hydrolases and glycosyl transferases, and to analyze lectin binding. In this chapter, detailed experimental procedures for the production of synthetic glycan microarrays and their use for the characterization of cell wall glycan-directed antibodies are described.


Asunto(s)
Pared Celular , Polisacáridos , Biología , Pared Celular/química , Lectinas/metabolismo , Análisis por Micromatrices/métodos , Polisacáridos/química
6.
Front Plant Sci ; 12: 640919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679857

RESUMEN

Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.

7.
Front Plant Sci ; 12: 589518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633757

RESUMEN

The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The Arabidopsis thaliana fucosyltransferases (FUTs), AtFUT4, and AtFUT6, are members of the plant-specific GT family 37 (GT37). AtFUT4 and AtFUT6 transfer fucose (Fuc) onto arabinose (Ara) residues of arabinogalactan (AG) proteins (AGPs) and have been postulated to be non-redundant AGP-specific FUTs. AtFUT4 and AtFUT6 were recombinantly expressed in mammalian HEK293 cells and purified for biochemical analysis. We report an updated understanding on the specificities of AtFUT4 and AtFUT6 that are involved in the synthesis of wall localized AGPs. Our findings suggest that they are selective enzymes that can utilize various arabinogalactan (AG)-like and non-AG-like oligosaccharide acceptors, and only require a free, terminal arabinofuranose. We also report with GUS promoter-reporter gene studies that AtFUT4 and AtFUT6 gene expression is sub-localized in different parts of developing A. thaliana roots.

8.
Plant J ; 106(3): 601-615, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544927

RESUMEN

Pattern-triggered immunity (PTI) is activated in plants upon recognition by pattern recognition receptors (PRRs) of damage- and microbe-associated molecular patterns (DAMPs and MAMPs) derived from plants or microorganisms, respectively. To understand better the plant mechanisms involved in the perception of carbohydrate-based structures recognized as DAMPs/MAMPs, we have studied the ability of mixed-linked ß-1,3/1,4-glucans (MLGs), present in some plant and microbial cell walls, to trigger immune responses and disease resistance in plants. A range of MLG structures were tested for their capacity to induce PTI hallmarks, such as cytoplasmic Ca2+ elevations, reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. These analyses revealed that MLG oligosaccharides are perceived by Arabidopsis thaliana and identified a trisaccharide, ß-d-cellobiosyl-(1,3)-ß-d-glucose (MLG43), as the smallest MLG structure triggering strong PTI responses. These MLG43-mediated PTI responses are partially dependent on LysM PRRs CERK1, LYK4 and LYK5, as they were weaker in cerk1 and lyk4 lyk5 mutants than in wild-type plants. Cross-elicitation experiments between MLG43 and the carbohydrate MAMP chitohexaose [ß-1,4-d-(GlcNAc)6 ], which is also perceived by these LysM PRRs, indicated that the mechanism of MLG43 recognition could differ from that of chitohexaose, which is fully impaired in cerk1 and lyk4 lyk5 plants. MLG43 treatment confers enhanced disease resistance in A. thaliana to the oomycete Hyaloperonospora arabidopsidis and in tomato and pepper to different bacterial and fungal pathogens. Our data support the classification of MLGs as a group of carbohydrate-based molecular patterns that are perceived by plants and trigger immune responses and disease resistance.


Asunto(s)
Pared Celular/metabolismo , Resistencia a la Enfermedad , Inmunidad de la Planta , beta-Glucanos/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Calcio/metabolismo , Capsicum/inmunología , Capsicum/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Oomicetos/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Trisacáridos
9.
Front Plant Sci ; 11: 1210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849751

RESUMEN

Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that ß-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance.

10.
Methods Mol Biol ; 2149: 503-512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617953

RESUMEN

Synthetic cell wall oligosaccharides are promising molecular tools for investigating the structure and function of plant cell walls. Their well-defined structure and high purity prevents misinterpretations of experimental data, and the possibility to introduce chemical handles provides means for easier localization and detection. Automated glycan assembly as emerged has a powerful new method for the efficient preparation of oligosaccharide libraries. We recently made use of this technology to prepare a collection of plant cell wall glycans for cell wall research. In this chapter, detailed experimental procedures for the automated synthesis of oligosaccharides that are ready for use in biological assays are described.


Asunto(s)
Automatización de Laboratorios/métodos , Pared Celular/química , Oligosacáridos/síntesis química , Células Vegetales/química , Polisacáridos/análisis , Técnicas de Síntesis en Fase Sólida/métodos , Pared Celular/metabolismo , Cromatografía Líquida de Alta Presión , Galactanos/química , Glucanos/química , Glicosilación , Oligosacáridos/química , Fotólisis , Células Vegetales/metabolismo , Polisacáridos/química , Xilanos/química
11.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32396713

RESUMEN

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Asunto(s)
Glicosiltransferasas/química , Plantas/enzimología , Polisacáridos/análisis , Pared Celular/química
12.
Chembiochem ; 21(10): 1517-1525, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31850611

RESUMEN

Xylophagous long-horned beetles thrive in challenging environments. To access nutrients, they secrete plant-cell-wall-degrading enzymes in their gut fluid; among them are cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2). Recently, we discovered that several beetle-derived GH5_2s use xylan as a substrate instead of cellulose, which is unusual for this family of enzymes. Here, we analyze the substrate specificity of a GH5_2 xylanase from the beetle Apriona japonica (AJAGH5_2-1) using commercially available substrates and synthetic arabinoxylan oligo- and polysaccharides. We demonstrate that AJAGH5_2-1 processes arabinoxylan polysaccharides in a manner distinct from classical xylanase families such as GH10 and GH11. AJAGH5_2-1 is active on long oligosaccharides and cleaves at the non-reducing end of a substituted xylose residue (position +1) only if: 1) three xylose residues are present upstream and downstream of the cleavage site, and 2) xylose residues at positions -1, -2, +2 and +3 are not substituted.


Asunto(s)
Pared Celular/metabolismo , Escarabajos/enzimología , Endo-1,4-beta Xilanasas/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismo , Animales , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/clasificación , Especificidad por Sustrato
13.
Carbohydr Res ; 481: 31-35, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31228654

RESUMEN

Interactions of carbohydrates and proteins are essential for many biological processes and glycan microarrays have emerged as powerful tools to rapidly assess these carbohydrate-protein interactions. Diverse platforms to immobilize glycans on glass slides for subsequent probing of the specificities of glycan-binding proteins (GBPs) have evolved. It has been suggested that high local glycan density on microarrays is crucial for detecting low-affinity interactions. To determine the influence of printing efficacy on GBP binding, we compared N-hydroxyl succinimide (NHS)-ester activated glass slides from three different manufacturers and evaluated two different printing buffers. Large differences in binding efficacies of Concanavalin A, peanut agglutinin, and Ricinus communis agglutinin 120 were observed. On some slides, low affinity interactions were missed altogether. Addition of polyethylenglycol (PEG) 400 to the printing buffer significantly enhanced the sensitivity of the binding assays. After monitoring printing efficacy over prolonged printing times, substantial effects resulting from progressing hydrolysis of the NHS-esters during the printing run on one type of slides were found. Printing efficiency of glycans strongly depends on the type of NHS-ester activated slides, the printing buffer, and the printing time. We provide practical advice for selecting the right printing conditions for particular applications.


Asunto(s)
Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Impresión , Proteínas/metabolismo , Tampones (Química) , Humedad , Unión Proteica
14.
Chembiochem ; 20(7): 877-885, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427113

RESUMEN

The plant cell wall provides the richest available resource of fermentable carbohydrates and biobased materials. The main component of plant cell walls is cellulose, which is the most abundant biomolecule on earth. Apart from cellulose, which is constructed from relatively simple ß-1,4-glucan chains, plant cell walls also contain structurally more complex heteropolysaccharides (hemicellulose and pectin), as well as lignin and cell-wall proteins. A detailed understanding of the molecular structures, functions, and biosyntheses of cell-wall components is required to further promote their industrial use. Plant cell-wall research is, to a large degree, hampered by a lsack of available well-defined oligosaccharide samples that represent the structural features of cell-wall glycans. One technique to access these oligosaccharides is automated glycan assembly; a technique in which monosaccharide building blocks are, similarly to automated peptide and oligonucleotide chemistry, successively added to a linker-functionalized resin in a fully automated manner. Herein, recent research into the automated glycan assembly of different classes of cell-wall glycans used as molecular tools for cell-wall biology is discussed. More than 60 synthetic oligosaccharides were prepared and printed as microarrays for screening monoclonal antibodies that recognize plant cell-wall polysaccharides. The synthesized oligosaccharides have also been used to investigate glycosyltransferases and glycoside hydrolases, which are involved in synthesis and degradation of plant cell walls, as well as for the analysis of cell-wall-remodeling enzymes.


Asunto(s)
Pared Celular/metabolismo , Plantas/metabolismo , Polisacáridos/metabolismo , Anticuerpos Monoclonales/inmunología , Secuencia de Carbohidratos , Pruebas de Enzimas , Glicósido Hidrolasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Polisacáridos/síntesis química , Polisacáridos/inmunología , Especificidad por Sustrato
15.
Angew Chem Int Ed Engl ; 57(37): 11987-11992, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044516

RESUMEN

The heterogeneous nature of non-cellulosic polysaccharides, such as arabinoxylan, makes it difficult to correlate molecular structure with macroscopic properties. To study the impact of specific structural features of the polysaccharides on crystallinity or affinity to other cell wall components, collections of polysaccharides with defined repeating units are required. Herein, a chemoenzymatic approach to artificial arabinoxylan polysaccharides with systematically altered branching patterns is described. The polysaccharides were obtained by glycosynthase-catalyzed polymerization of glycosyl fluorides derived from arabinoxylan oligosaccharides. X-ray diffraction and adsorption experiments on cellulosic surfaces revealed that the physicochemical properties of the synthetic polysaccharides strongly depend on the specific nature of their substitution patterns. The artificial polysaccharides allow structure-property relationship studies that are not accessible by other means.

16.
Chembiochem ; 19(8): 793-798, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29384258

RESUMEN

The plant cell wall is a cellular exoskeleton consisting predominantly of a complex polysaccharide network that defines the shape of cells. During growth, this network can be loosened through the action of xyloglucan endotransglycosylases (XETs), glycoside hydrolases that "cut and paste" xyloglucan polysaccharides through a transglycosylation process. We have analyzed cohorts of XETs in different plant species to evaluate the substrate specificities of xyloglucan acceptors by using a set of synthetic oligosaccharides obtained by automated glycan assembly. The ability of XETs to incorporate the oligosaccharides into polysaccharides printed as microarrays and into stem sections of Arabidopsis thaliana, beans, and peas was assessed. We found that single xylose substitutions are sufficient for transfer, and xylosylation of the terminal glucose residue is not required by XETs, independent of plant species. To obtain information on the potential xylosylation pattern of the natural acceptor of XETs, that is, the nonreducing end of xyloglucan, we further tested the activity of xyloglucan xylosyl transferase (XXT) 2 on the synthetic xyloglucan oligosaccharides. These data shed light on inconsistencies between previous studies towards determining the acceptor substrate specificities of XETs and have important implications for further understanding plant cell wall polysaccharide synthesis and remodeling.


Asunto(s)
Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Cromatografía Líquida de Alta Presión , Plantas/clasificación , Plantas/metabolismo , Especificidad de la Especie
17.
Org Biomol Chem ; 15(47): 9996-10000, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29177276

RESUMEN

We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2).


Asunto(s)
Anticuerpos Monoclonales/química , Arabidopsis/química , Automatización , Pared Celular/química , Oligosacáridos/síntesis química , Polisacáridos/química , Arabidopsis/enzimología , Pared Celular/enzimología , Análisis por Micromatrices , Oligosacáridos/química , Oligosacáridos/metabolismo , Pentosiltransferasa/metabolismo , Polisacáridos/metabolismo
18.
J Org Chem ; 82(23): 12066-12084, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29120180

RESUMEN

The synthesis of linear and (1 → 6)-branched ß-(1 → 3)-d-galactans, structures found in plant arabinogalactan proteins (AGPs), is described. The synthetic strategy relies on iterative couplings of monosaccharide and disaccharide thioglycoside donors, followed by a late-stage glycosylation of heptagalactan backbone acceptors to introduce branching. A key finding from the synthetic study was the need to match protective groups in order to tune reactivity and ensure selectivity during the assembly. Carbohydrate microarrays were generated to enable the detailed epitope mapping of two monoclonal antibodies known to recognize AGPs: JIM16 and JIM133.


Asunto(s)
Galactanos/síntesis química , Mucoproteínas/síntesis química , Secuencia de Carbohidratos , Mapeo Epitopo , Galactanos/química , Análisis por Micromatrices , Mucoproteínas/química , Proteínas de Plantas/síntesis química , Proteínas de Plantas/química
19.
Curr Opin Chem Biol ; 40: 145-151, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29024888

RESUMEN

For more than a century the primary carbon source for the production of fuels, chemicals and many materials has been fossil resources. Recently, plant polysaccharides from non-food biomass have emerged as a promising renewable alternative that may displace a significant fraction of petroleum-derived products. As a food source, plant polysaccharides can provide beneficial effects on the human immune system in the form of dietary fiber. Despite the strong impact of plant glycans on society and human health, their chemical synthesis remains largely unexplored compared to the synthesis of mammalian and bacterial glycans. Synthetic glycans such as described in this review provide an important toolbox for studying the role of carbohydrates in plant biology and their interaction with human health.


Asunto(s)
Plantas/química , Polisacáridos/química , Biocombustibles , Técnicas de Química Sintética/métodos , Glicosilación , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Polisacáridos/síntesis química , Polisacáridos/metabolismo
20.
Plant Physiol ; 175(3): 1094-1104, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924016

RESUMEN

In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Brachypodium/metabolismo , Pared Celular/metabolismo , Mapeo Epitopo , Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Glicósido Hidrolasas/metabolismo , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...